
Operating Systems

Lecture 3

Context Switch

Prof. Mengwei Xu



Recap of Last Course

9/23/2024 Mengwei Xu @ BUPT 2

BIOS Bootloader

Firmware, comes with HW
Software, comes with (or part of)

OS

The first software that runs since

power on

The first user-defined or user-

changeable software that runs

since power on

Usually stored on ROM and not

changeable

Stored with OS (hard disk, USB,

etc)



9/23/2024 Mengwei Xu @ BUPT 3

• An executable mainly consists
of bss, data, and code regions.

• Remember: this memory
address is NOT physical!

- Will learn how it’s translated into
physical address later.

Recap of Last Course

Stack

Heap

Uninitialized data (.bss)

Code (.text)

Initialized data (.data)

Low address

(0x0000..)

High address

(0xffff..)



9/23/2024 Mengwei Xu @ BUPT 4

• What does a stack store

Recap of Last Course



9/23/2024 Mengwei Xu @ BUPT 5

• Hardware-assisted isolation and protection
- User mode (用户态) vs. kernel mode (内核态)

- Teachers & TAs are in ?? mode, while students are in ?? mode

• What hardware needs to provide?
- Privileged instructions (特权指令)

- Memory protection

- Timer interrupts

- Safe mode transfer (this course)

Dual Mode



9/23/2024 Mengwei Xu @ BUPT 6

• user/app code vs. user/app process vs. user mode

• OS code vs. system process vs. kernel mode

Concepts

Code Process Mode



9/23/2024 Mengwei Xu @ BUPT 7

• Does user code always run in user process?

• Does user code always run in user mode?

• Does OS code always run in system process?

• Does OS code always run in kernel mode?

• How does code/CPU know if it’s in user or kernel mode?

Some Interesting Questions



9/23/2024 Mengwei Xu @ BUPT 8

• Does user code always run in user process?
- Yes. Third-party drivers?

• Does user code always run in user mode?
- Mostly, except eBPF

• Does OS code always run in system process?
- No. Interrupt handler

• Does OS code always run in kernel mode?
- No. Shells, UI components, etc..

• How does code/CPU know if it’s in user or kernel mode?
- Last 2 bits in cs segment selector

Some Interesting Questions



9/23/2024 Mengwei Xu @ BUPT 9

• User-kernel mode switch types
- Exceptions, interrupts, and system calls

• An x86 example of mode transfer

Goals for Today



9/23/2024 Mengwei Xu @ BUPT 10

• User-kernel mode switch types
- Exceptions, interrupts, and system calls

• An x86 example of mode transfer

Goals for Today



9/23/2024 Mengwei Xu @ BUPT 11

• Exceptions (异常)
- When the processor encounters unexpected condition.

- Illegal memory access, divide-by-zero, perform privileged instructions,
etc..

• Interrupts (中断)
- Asynchronous (异步) signal to the processor that some external event 

has occurred that may require its attention.

- Timer interrupts, I/O requests such as mouse movement/clicks, etc..

• System calls (系统调用, trap)
- User processes request the kernel do some operation on the user’s 

behalf.

- R/W files, create new processes, network connections, etc..

User-to-kernel Mode Switch



9/23/2024 Mengwei Xu @ BUPT 12

• What types of user-to-kernel switch are they (if any)?
- Inter-processor interrupt (IPI)

- Invalid opcode

- Segmentation fault

- Network card interrupt

- Divide-by-zero in Python/Java

User-to-kernel Mode Switch



9/23/2024 Mengwei Xu @ BUPT 13

• Interrupt vector table (中断向量表) stores the entries of different
handlers for exceptions, interrupts, and traps in real mode.

- A special register that points to a vector in kernel memory, where each 
entry points to the first instruction of a different handler procedure in the 
kernel.

Interrupt Vector Table



9/23/2024 Mengwei Xu @ BUPT 14

• Interrupt vector table (中断向量表) stores the entries of different
handlers for exceptions, interrupts, and traps in real mode.

- In x86, there are 256 entries in total. Each takes 4 bytes.

Interrupt Vector Table



9/23/2024 Mengwei Xu @ BUPT 15

• Interrupt Descriptor Table (IDT,中断描述符表) tells the CPU 
where the Interrupt Service Routines (ISR,中断服务程序) are 
located

- Entries are called ”Gates”, and there are 256 gates in total

- Each gate is 8-bytes long on 32-bit processors; or16-bytes long on 64-
bit processors

- Its location is kept in IDTR (IDT register), loaded with LIDT assembly
instruction

Interrupt Descriptor Table



9/23/2024 Mengwei Xu @ BUPT 16

• Interrupt Descriptor Table (IDT,中断描述符表) tells the CPU 
where the Interrupt Service Routines (ISR,中断服务程序) are 
located

Interrupt Descriptor Table

• Offset: A 32-bit value, split in two parts, represents the address of the Interrupt Service Routine.

• Selector: A Segment Selector which must point to a valid code segment in your GDT.

• Gate Type: A 4-bit value which defines the type of gate this Interrupt Descriptor represents. 
• Task gate, interrupt gate, trap gate, call gate..What’s the difference?

• DPL: A 2-bit value which defines the CPU Privilege Levels which are allowed to access this interrupt via the INT. 

• P: Present bit. Must be set (1) for the descriptor to be valid.



9/23/2024 Mengwei Xu @ BUPT 17

• Interrupt Descriptor Table (IDT,中断描述符表) tells the CPU 
where the Interrupt Service Routines (ISR,中断服务程序) are 
located

Interrupt Descriptor Table

Why offset is split into

two parts?



9/23/2024 Mengwei Xu @ BUPT 18

Interrupt Descriptor Table

Gate

Segment Descriptor

IDT

GDT or LDT

IDTR

Interrupt

number
+

offset

base addr

Interrupt Procedure



9/23/2024 Mengwei Xu @ BUPT 19

Interrupt Descriptor Table

Gate

Segment Descriptor

IDT

GDT or LDT

IDTR

Interrupt

number
+

offset

base addr

Interrupt Procedure

Notified by the

interrupted devices

through bus



9/23/2024 Mengwei Xu @ BUPT 20

IVT vs. IDT

IVT IDT

Both guarantee a limited number entries from user to kernel

space (isolation)

Used in real mode Used in protected mode

4-byte entries
8-byte (IA-32) or 16-byte

(x86-64) entries

Typically located 

at 0000:0000H

Anywhere in memory and

located through LIDT

instruction



9/23/2024 Mengwei Xu @ BUPT 21

• Disable interrupts and enable interrupts are two privileged
instructions

- Maskable interrupts (可屏蔽中断): all software interrupts, all system
calls, and partial hardware exceptions

- Non-maskable interrupts (NMI，不可屏蔽中断): partial hardware
exceptions

- Specified by eflags registers

• Interrupts are deferred, but not ignored
- Given the limited buffer for interrupts, hardware buffers one interrupt of

each type

Interrupt Masking



9/23/2024 Mengwei Xu @ BUPT 22

Interrupt Mas king

Interrupt Controller

Network

IntID

Interrupt

Interru
pt M

ask

ControlSoftware
Interrupt NMI

CPU

Prio
rity Enco

d
er

Tim
er

Int Disable



9/23/2024 Mengwei Xu @ BUPT 23

• Interrupt stack (中断栈) is a special stack in kernel memory that
saves the interrupt process status.

- Empty when there is no interrupt (running in user space)

• Why not directly use the user-space stack?
- For reliability and security

Interrupt Stack



9/23/2024 Mengwei Xu @ BUPT 24

• How many interrupt stacks in kernel?

Interrupt Stack

1 x # of processes (threads)



9/23/2024 Mengwei Xu @ BUPT 25

• How many interrupt stacks in kernel?

Interrupt Stack

1 x # of processes (threads)

• First fault: trap from user-space program

to kernel-space exception handler

• Double fault: trap from exception handler

to another handler

• Triple fault: reboot



9/23/2024 Mengwei Xu @ BUPT 26

• How many interrupt stacks in kernel?

Interrupt Stack

1 x # of processes (threads)

Things never to do in an OS #1: Swap out the page 

swapping code (triple-fault here we come).

—Kemp



9/23/2024 Mengwei Xu @ BUPT 27

• How many interrupt stacks in kernel?

Interrupt Stack

1 x # of processes (threads)

Make it easier to switch to a new process inside an

interrupt or system call handler.
e.g., a handler might wait for I/O so another process could run



9/23/2024 Mengwei Xu @ BUPT 28

• New process

• Resume after an interrupt/exception/syscall

• Switch to a different process
- After a timer interrupt

• User-level upcall

Kernel-to-User Mode Switch



9/23/2024 Mengwei Xu @ BUPT 29

• Allow apps to implement OS-like functionality to be invoked by
OS

1. Asynchronous I/O notification
- Wait for I/O completion

2. Inter-process communication
- Debugger suspends a process

3. User-level exception handling
- Ensures files are saved before app shuts down

4. User-level resource allocation
- Java garbage collection

Upcalls



9/23/2024 Mengwei Xu @ BUPT 30

• User-kernel mode switch types
- Exceptions, interrupts, and system calls

• An x86 example of mode transfer

Goals for Today



9/23/2024 Mengwei Xu @ BUPT 31

• Memory is segmented, so pointers come in two parts: a
segment and an offset

- Program counter: cs register and eip register

- Stack pointer: ss register and esp register

- CPL is stored as the 2 lower-bits of cs register

• In Intel 8086: cs:eip = cs * 16 + eip
- Both cs and eip are 16-bits long, therefore CPU can access at most

2*20 (1MB) memory space

• EFLGAS register stores the processor status and controls its
behavior

- Whether interrupts are masked or not

x86 background



9/23/2024 Mengwei Xu @ BUPT 32

• Memory is segmented, so pointers come in two parts: a
segment and an offset

- Program counter: cs register and eip register

- Stack pointer: ss register and esp register

- CPL is stored as the 2 lower-bits of cs register

• In Intel 8086: cs:eip = cs * 16 + eip
- Both cs and eip are 16-bits long, therefore CPU can access at most

2*20 (1MB) memory space

• EFLGAS register stores the processor status and controls its
behavior

- Whether interrupts are masked or not

x86 background

Why is it possible (2 bits wasted)?



9/23/2024 Mengwei Xu @ BUPT 33

• Only a small number of instructions can change the cs register
value

- ljmp (far jump)

- lcall (far call), which pushes eip and cs to the stack, and then far jumps

- lref (far return), which inverses the far call

- INT: an assembly language instruction for x86 processors that 
generates a software interrupt. It takes the interrupt number formatted 
as a byte value. which reads cs / eip from the Interrupt Vector Table

- IRET:returns program control from an exception or interrupt handler to 
a program or procedure that was interrupted previously
❑ It basically reverses an INT

x86 background

Format: INT X (syscall number)



9/23/2024 Mengwei Xu @ BUPT 34

• When an interrupt/exception/syscall occurs, the hardware will:

x86 Mode Transfer

1. Mask interrupts

2. Save the special register values

to other temporary registers

3. Switch onto the kernel

interrupt stack

4. Push the three key values onto

the new stack

5. Optionally save an error code

6. Invoke the interrupt handler

CS:EIP

SS:ESP

EFLAGS

Others:

EAX, EBX..

foo() {

x = x + 1;

y = x + 2;

…

}

User-space process Registers

handler() {

pushad;

…

}

Kernel

Interrupt StackUser Stack

Before interrupt



9/23/2024 Mengwei Xu @ BUPT 35

• When an interrupt/exception/syscall occurs, the hardware will:

x86 Mode Transfer

1. Mask interrupts

2. Save the special register values

to other temporary registers

3. Switch onto the kernel

interrupt stack

4. Push the three key values onto

the new stack

5. Optionally save an error code

6. Invoke the interrupt handler

CS:EIP

SS:ESP

EFLAGS

Others:

EAX, EBX..

foo() {

x = x + 1;

y = x + 2;

…

}

User-space process Registers

handler() {

pushad;

…

}

Kernel

Interrupt Stack

User Stack

At the beginning of handler

SS:ESP

EFLAGS

CS:EIP

Error



9/23/2024 Mengwei Xu @ BUPT 36

• When an interrupt/exception/syscall occurs, the hardware will:

x86 Mode Transfer

1. Mask interrupts

2. Save the special register values

to other temporary registers

3. Switch onto the kernel

interrupt stack

4. Push the three key values onto

the new stack

5. Optionally save an error code

6. Invoke the interrupt handler

Before interrupt

• Steps 2-4 cannot be reversed. Why?

• Can they be done by software (OS)?

• Error codes

- Page faults: which page?

- Others: dummy values



9/23/2024 Mengwei Xu @ BUPT 37

• When an interrupt/exception/syscall occurs, the OS will:

x86 Mode Transfer

1. Save the rest of the interrupted

process’s state

• pusha/pushad

2. Executes the handler

3. Resume the interrupted process

• popa/popad + pop error

code

4. Resume the interrupted process

• iret

CS:EIP

SS:ESP

EFLAGS

Others:

EAX, EBX..

foo() {

x = x + 1;

y = x + 2;

…

}

User-space process Registers

handler() {

pushad;

…

}

Kernel

Interrupt Stack

User Stack

During interrupt handler

SS:ESP

EFLAGS

CS:EIP

Error

…

EBX

EAX



9/23/2024 Mengwei Xu @ BUPT 38

• Who modifies the CPL (2 bits in CS)? Instructions like:
- int/SYSCALL

- iret

x86 Mode Transfer



9/23/2024 Mengwei Xu @ BUPT 39

• Who modifies the CPL (2 bits in CS)? Instructions like:
- int/SYSCALL

- iret

x86 Mode Transfer



9/23/2024 Mengwei Xu @ BUPT 40

Why OS does not track the “heap pointer” as for
stack?

Stack vs. Heap



9/23/2024 Mengwei Xu @ BUPT 41

• Interrupt processing not visible to the user process:
- Occurs between instructions, restarted transparently

- No change to process state

• Interrupts are safely designed
- Interrupt vector: limited number of entry points into kernel

- Interrupt stack: kernel handler/user states are decoupled

- Interrupt masking: handler is non-blocking

• Again, there is hardware-software (OS) cooperation

Summary



9/23/2024 Mengwei Xu @ BUPT 42

• Read the interrupt handler code of xv6, and try to understand
what is going on. Check it out on our website.

Homework


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

