Operating Systems
Lecture 3

Context Switch

Prof. Mengwei Xu

Recap of Last Course

BIOS

Bootloader

Firmware, comes with HW

Software, comes with (or part of)

OS

The first software that runs since
power on

The first user-defined or user-
changeable software that runs
since power on

Usually stored on ROM and not
changeable

Stored with OS (hard disk, USB,
etc)

Recap of Last Course

« An executable mainly consists

of bss, data, and code regions.

« Remember: this memory
address is NOT physical!

- Will learn how it's translated into
physical address later.

High address
(Oxffff..)

Low address
(0x0000..)

Stack

'
1

Heap

Uninitialized data (.bss)

Initialized data (.data)

Code (.text)

Recap of Last Course

 What does a stack store

m bar m
m foo foo foo m
m main main main main main m

Stack Stack Stack Stack Stack Stack Stack

9/23/2024 Mengwei Xu @ BUPT 4

Dual Mode

« Hardware-assisted isolation and protection
- User mode (P %) vs. kernel mode (NZZS)
- Teachers & TAs are in ?? mode, while students are in ?? mode

 What hardware needs to provide?
- Privileged instructions (45 42)
- Memory protection
- Timer interrupts
- Safe mode transfer (this course)

Concepts

* user/app code vs. user/app process vs. user mode
* OS code vs. system process vs. kernel mode

Protection Rings

Operating
System
Kernel

Operating System “ @

Services

Applications

Code Process Mode

9/23/2024 Mengwei Xu @ BUPT 6

Some Interesting Questions

Does user code always run in user process?

Does user code always run in user mode?

Does OS code always run in system process?

Does OS code always run in kernel mode?

How does code/CPU know if it's in user or kernel mode?

Some Interesting Questions

* Does user code always run in user proce
Conen]

- Yes. Third-party drivers? o
>C:< g — HeBPF
» Does user code always run in user mode 5 g o=
- Mostly, except eBPF S e e e

event event = {

* Does OS code always run in system proc [C‘;’E”;"g;b?;gf;mnt-pid_tgido -
- No. Interrupt handler |

* Does OS code always run in kernel mode
- No. Shells, Ul components, etc..

 How does code/CPU know if it's in user or kernel mode?
- Last 2 bits in ¢s segment selector

rrent_comm(&event.co mm, sizeof(event.comm));

nts.perf_submit(ctx, &e t, sizeof(even :

9/23/2024 Mengwei Xu @ BUPT 8

Goals for Today

» User-kernel mode switch types
- Exceptions, interrupts, and system calls

* An x86 example of mode transfer

9/23/2024 Mengwei Xu @ BUPT 9

Goals for Today

» User-kernel mode switch types
- Exceptions, interrupts, and system calls

* An x86 example of mode transfer

9/23/2024 Mengwei Xu @ BUPT 10

User-to-kernel Mode Switch

« Exceptions (%)
- When the processor encounters unexpected condition.
- lllegal memory access, divide-by-zero, perform privileged instructions,

etc..
* Interrupts (5 #r)

- Asynchronous (52) signal to the processor that some external event
has occurred that may require its attention.

- Timer interrupts, 1/O requests such as mouse movement/clicks, etc..

« System calls (R4 A, trap)

- User processes request the kernel do some operation on the user’s
behalf.

- R/W files, create new processes, network connections, etc..

9/23/2024 Mengwei Xu @ BUPT I

User-to-kernel Mode Switch

* What types of user-to-kernel switch are they (if any)?
- Inter-processor interrupt (I1P1)

Invalid opcode

Segmentation fault

Network card interrupt

Divide-by-zero in Python/Java

9/23/2024 Mengwei Xu @ BUPT 12

9/23/2024

Interrupt Vector Table

* Interrupt vector table (-

kernel. Processor
Register

1T] 2 32) stores the entries of different
handlers for exceptions, interrupts, and traps in real mode.

- A special register that points to a vector in kernel memory, where each
entry points to the first instruction of a different handler procedure in the

Interrupt
Vector

=

handleTimerinterrupt() {

=

}
handleDivideByZero() {

=
}

- handleTrap() {

\

}

Mengwei Xu @ BUPT 13

Interrupt Vector Table

* Interrupt vector table (9 i [n] & 3K) stores the entries of different

handlers for exceptions, interrupts, and traps in real mode.
- In x86, there are 256 entries in total. Each takes 4 bytes.

// Trap numbers
// These are processor defined:

CPU Interrupt Layout

..

#define T _DIVIDE 0 // divide error

9/23/2024

..

#define T_SIMDERR
Mengwei Xu @ BUPT

19

//

IVT Offset | INT # | Description i :
R b e i e e e e e e #define T_DEBUG 1 // debug exception
| 0x0000 I 0x00 Divide by 0 | #define T_NMI 2 // non-maskable interrupt
i 0x0004 0x01 Reserved . .
. | ox02 MT Tnterrant #def}ne T_BRKPT 3 // breakpoint
. ox000C | 0x03 Breakpoint (INT3) #define T_OFLOW 4 // overflow
| 0x0010 | 0x04 overflow (INTO) #define T_BOUND 5 // bounds check
0x0014 | oxo05 Bounds range exceeded (BOUND) #tdefine T ILLOP 6 // illegal opcode
i 0x0018 | 0x06 | Invalid opcode (UD2) . = . .
i 0x001C | 0x07 | pevice not available (WAIT/FWAIT) #def:!'ne T_DEVICE 7 // device not available
| 0x0020 | 0x08 | Double fault #define T_DBLFLT 8 // double fault
o002 | 0x09 | Coprocessor segment overrun /x #define T_COPROC 9 // reserved (not generated by
e I e e #define T_TSS 10 // invalid task switch segment
i 0x002C | oxoB | segment not present .
| 0x0030 | oxoc | Stack-segment fault #define T_SEGNP 11 // segment not present
0x0034 | oxoD | General protection fault #define T_STACK 12 // stack exception
E gﬂﬁgg I ?ﬁi ?Wefafi #define T_GPFLT 13 // general protection fault
! X X eserve .
| 0x0040 | ox10 | x87 FPU error #deflnelT_PGFLT 14 // page fault
| 0x0044 | ox11 | Alignment check /* #tdefine T_RES 15 // reserved
| ema IOxH IMmmhf check #define T_FPERR 16 // floating point error
1 0x004C 0x13 SIMD Floating-Point Exception . .
| 0m00xx | 0x14-0x1F | Reserved #def}ne T_ALIGN 17 // allgment check
0x0xxxX | 0x20-0xFF | User definable #define T_MCHK 18 // machine check

SIMD floating point error

Interrupt Descriptor Table

* Interrupt Descriptor Table (IDT, H kA 47 3%) tells the CPU
where the Interrupt Service Routines (ISR, Bl iR &S5 FEF) are
located

- Entries are called "Gates”, and there are 256 gates in total

- Each gate is 8-bytes long on 32-bit processors; orl6-bytes long on 64-
bit processors

- Its location is kept in IDTR (IDT register), loaded with LIDT assembly
Instruction

Interrupt Descriptor Table

* Interrupt Descriptor Table (IDT, H kA 47 3%) tells the CPU
where the Interrupt Service Routines (ISR, ¥ IR & FE)7) are

Gate Descriptor (32-bit):

63 48|47 |46 45|44 |43 40 39 32
Offset P DPL @ 0 Gate Type Reserved

31 16 1 0 3 0

31 16 15 0
Segment Selector Offset

15 015 0

Offset: A 32-bit value, split in two parts, represents the address of the Interrupt Service Routine.
Selector: A Segment Selector which must point to a valid code segment in your GDT.

Gate Type:A 4-bit value which defines the type of gate this Interrupt Descriptor represents.

» Task gate, interrupt gate, trap gate, call gate..What'’s the difference?
DPL:A 2-bit value which defines the CPU Privilege Levels which are allowed to access this interrupt via the INT.
P: Present bit. Must be set (1) for the descriptor to be valid.

Interrupt Descriptor Table

* Interrupt Descriptor Table (IDT, H kA 47 3%) tells the CPU
where the Interrupt Service Routines (ISR, ¥ IR & FE)7) are

Gate Descriptor (32-bit):

63 48|47 |46 45|44 |43 40 39 32
Offset P DPL @ 0 Gate Type Reserved

31 16 1 0 3 0

31 16 15 0
Segment Selector Offset

15 015 0

struct gate_struct {
ulé offset_low; struct idt_bits {
ulé segment; uleé ist

struct idt_bits bits; Zero

16 offset middle; type Why offset is split into

#ifdef CONFIG_X86_64 dpl ' two parts?
u3z offset_high;

p
u3sz reserved;

_ } __attribute_ ((packed));
#endif

} __attribute_ ((packed));

Interrupt Descriptor Table

// Read processor's CR2 register to find the faulting address

IDT
IDTR >
Interrupt offset =/_|_\
number Gate N
(struct Trapframe xtf)
fault_va;
GDT or LDT fault_va = ();
// Handle kernel-mode page faults.
// LAB 3: Your code here.
if ((tf->tf_cs & 0x3) == 0)
base addr

\ 4

Segment Descriptor

9/23/2024

("Unhanlded page fault in kernel: %@8x\n", fault_va);

Interrupt Procedure

Mengwei Xu @ BUPT 18

Interrupt Descriptor Table

IDT
IDTR >

A I ffset

| Interrupt | oftse =f+\

| number | Gate P
Notified by the (struct Trapframe *tf)
interrupted devices fault va:
through bus

// Read processor's CR2 register to find the faulting address

GDT or LDT fault_va = ();

// Handle kernel-mode page faults.

// LAB 3: Your code here.
if ((tf->tf_cs & 0x3) == 0)
base addr ("Unhanlded page fault in kernel: %@8x\n", fault_va);

\ 4

Segment Descriptor

Interrupt Procedure

9/23/2024 Mengwei Xu @ BUPT 19

IVT vs. IDT

IVT IDT

Both guarantee a limited number entries from user to kernel
space (isolation)

Used in real mode Used in protected mode

8-byte (IA-32) or | 6-byte

4-byte entries (x86-64) entries

Anywhere in memory and
located through LIDT
instruction

Typically located
at 0000:0000H

Interrupt Masking

 Disable interrupts and enable interrupts are two privileged
Instructions

- Maskable interrupts (v] 55 ikk H r): all software interrupts, all system
calls, and partial hardware exceptions

- Non-maskable interrupts (NMI, A\] B¢k 5 #¥r): partial hardware
exceptions

- Specified by eflags registers

* Interrupts are deferred, but not ignored

- Given the limited buffer for interrupts, hardware buffers one interrupt of
each type

21

9/23/2024 Mengwei Xu @ BUPT

Interrupt Mas king

Interrupt Controller

[] int Disable

Control

NMI
Network

9/23/2024 Mengwei Xu @ BUPT 22

Interrupt Stack

* Interrupt stack (Fr4%) is a special stack in kernel memory that
saves the interrupt process status.

- Empty when there is no interrupt (running in user space)

* Why not directly use the user-space stack?
- For reliability and security

9/23/2024

Interrupt Stack

 How many interrupt stacks in kernel?

| | x

£

L of processes (threads)

Mengwei Xu @ BUPT

24

Interrupt Stack

 How many interrupt stacks in kernel?

| | x| # of processes (threads)

4

* First fault: trap from user-space program
to kernel-space exception handler

* Double fault: trap from exception handler
to another handler

* Triple fault: reboot

9/23/2024 Mengwei Xu @ BUPT 25

9/23/2024

Interrupt Stack

 How many interrupt stacks in kernel?

4

X

£

L of processes (threads)

Things never to do in an OS #1: Swap out the page
swapping code (triple-fault here we come).

—Kemp

Mengwei Xu @ BUPT

26

9/23/2024

Interrupt Stack

 How many interrupt stacks in kernel?

| | x

£

L of processes (threads)

4

Make it easier to switch to a new process inside an

interrupt or system call handler.

e.g., a handler might wait for 1/O so another process could run

Mengwei Xu @ BUPT

27

Kernel-to-User Mode Switch

* New process
 Resume after an interrupt/exception/syscall

« Switch to a different process
- After a timer interrupt

» User-level upcall

9/23/2024 Mengwei Xu @ BUPT 28

9/23/2024

Upcalls

 Allow apps to implement OS-like functionality to be invoked by

OS

downcall

(syscall)

1. Asynchronous I/O notification
- Wait for 1/O completion aset code

2. Inter-process communication keinel
- Debugger suspends a process

3. User-level exception handling
_ enters kernel mode
- Ensures files are saved before app shuts ippiemented via trap

4. User-level resource allocation
- Java garbage collection

'

unprivileged code

Mengwei Xu @ BUPT

upcall

un-privileged

puvileged

privileged code
enters user mode

implemented via IPC

29

Goals for Today

» User-kernel mode switch types
- Exceptions, interrupts, and system calls

 An x86 example of mode transfer

9/23/2024 Mengwei Xu @ BUPT 30

Xx86 background

 Memory is segmented, so pointers come in two parts: a
segment and an offset
- Program counter: cs register and eip register
- Stack pointer: ss register and esp register
- CPL Is stored as the 2 lower-bits of cs register

* In Intel 8086: cs:eip=cs* 16 + elp

- Both cs and eip are 16-bits long, therefore CPU can access at most
2*20 (1MB) memory space

 EFLGAS register stores the processor status and controls its
behavior

- Whether interrupts are masked or not

Xx86 background

 Memory is segmented, so pointers come in two parts: a
segment and an offset
- Program counter: cs register and eip register
- Stack pointer: ss register and esp register
- CPL is stored as the 2 lower-bits of €s reqistet,

hy is it possible (2 bits wasted)?
|

* In Intel 8086: cs:eip=cs* 16 + elp

- Both cs and eip are 16-bits long, therefore CPU can access at most
2*20 (1MB) memory space

 EFLGAS register stores the processor status and controls its
behavior

- Whether interrupts are masked or not

Xx86 background

* Only a small number of instructions can change the cs register
value
- jmp (far jump)
- |call (far call), which pushes elp and cs to the stack, and then far jumps
- Iref (far return), which inverses the far call

- INT: an assembly language instruction for x86 processors that
generates a software interrupt. It takes the interrupt number formatted

as a byte value WhICh nglard)% ?Ssyé c:eal rﬁ[ﬁ’n et}e Interrupt Vector Table

- IRET:returns program control from an exception or interrupt handler to
a program or procedure that was interrupted previously

O It basically reverses an INT

Xx86 Mode Transfer

* When an interrupt/exception/syscall occurs, the hardware will:

User-space process

|. Mask interrupts

2. Save the special register values
to other temporary registers

3. Switch onto the kernel
interrupt stack

4. Push the three key values onto
the new stack

5. Optionally save an error code

6. Invoke the interrupt handler

foo() {

Registers

Xx=x+I;
y=x+2;

—

User Stack

CS:EIP

Y
I\

SS:ESP

Y
J\

EFLAGS

J
\

\f

Others:
EAX, EBX..

A

9/23/2024

Mengwei Xu @ BUPT

\. J

Before

interrupt

Kernel

handler() {
pushad;

Interrupt Stack

34

Xx86 Mode Transfer

* When an interrupt/exception/syscall occurs, the hardware will:

User-space process Registers Kernel
|. Mask interrupts foo() { () handler () {
: : =x+ | CS:EIP ushad;
2. Save the special register values XTXT Demamn- D < P ’
to other tem ' yEX : >S:ESP
porary registers Lo))
3. Switch onto the kernel } i EFLAGS
interrupt stack o S Interrupt Stack
4. Push the three key values ont | Srhers
. Push the three key values onto User Stack ' EAX, EBX.. X
the new stack LN d Error
5. Optionally save an error code] CS:EIP
6. Invoke the interrupt handler S
P i EFLAGS
|
B EEREEEEEE SS:ESP

At the beginning of handler

9/23/2024 Mengwei Xu @ BUPT 35

Xx86 Mode Transfer

* When an interrupt/exception/syscall occurs, the hardware will:

|. Mask interrupts

2. Save the special register values R Steps 2-4 cannot be reversed. Why7
to other temporary registers

3. Switch onto the kernel * Can they be done by software (0OS)?
interrupt stack

4. Push the three key values onto * Error codes

the new stack - Page faults: which page?

5. Optionally save an error code

6. Invoke the interrupt handler - Others: dummy values

Before interrupt

9/23/2024 Mengwei Xu @ BUPT 36

Xx86 Mode Transfer

* When an interrupt/exception/syscall occurs, the OS will:

User-space process Registers Kernel
|. Save the rest of the interrupted foo() { (.) handler() {
’ et |- CS:EIP ushad:
process’s state X=X et N < P ’
=X ; I . cen
* pushal/pushad Y Lo SS:ESP))
2. Executes the handler } i \ EFLAGS) Interrupt Stack
3. Resume the interrupted process e A
! Others:
* HENS/IEERE + pop error User Stack | EAX, EBX.. ” EBX
N J
code : EAX
4. Resume the interrupted process ! E
| rror
* jret e - - 1mmmmmmm oo CS:EIP
! EFLAGS
R RRREEEEEEES SS:ESP

During interrupt handler

9/23/2024 Mengwei Xu @ BUPT 37

Xx86 Mode Transfer

* Who modifies the CPL (2 bits in CS)? Instructions like:
- INt/SYSCALL
- Iret

#define _GNU_SOURCE
#include <unistd.h
#include <sys/syscall.h

int () {

char msg[] = "Hello, Kernel!\n";
(SYS_write, STDOUT_FILENO, msg, sizeof(msg) - 1);
return 0;

9/23/2024 Mengwei Xu @ BUPT 38

9/23/2024

Xx86 Mode Transfer

* Who modifies the CPL (2 bits in CS)? Instructions like:

- INt/SYSCALL
- iret

#include <stdio.h

int

() {

/* Define message and file descriptor */
char msgl[] = "Hello, Kernel!\n";

int fd = 1; // STDOUT

/* Inline assembly to trap into kernel x/

__asm__ (
movl $4, eax; VE:>
movl %0, bx; VES
movl %1, CX} /%
movl %2, edx; /%
int $0x80; VE:>

€
€

syscall number for sys_write x/
file descriptor *x/

pointer to message x/

message length x/

software interrupt */

/* no output x/
g"(fd), "g"(msg), "g"(sizeof(msg) - 1)

eax", "ebx", "ecx", "edx

);

return 0;

Mengwei Xu @ BUPT

39

Stack vs. Heap

Why OS does not track the *heap pointer” as for
stack?

9/23/2024 Mengwei Xu @ BUPT 40

Summary

* Interrupt processing not visible to the user process:
- Occurs between instructions, restarted transparently
- No change to process state

* Interrupts are safely designed
- Interrupt vector: limited number of entry points into kernel
- Interrupt stack: kernel handler/user states are decoupled
- Interrupt masking: handler is non-blocking

* Again, there Is hardware-software (OS) cooperation

Homework

* Read the interrupt handler code of xv6, and try to understand
what is going on. Check it out on our website.

9/23/2024 Mengwei Xu @ BUPT 42

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

